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Abstract

In this paper, we propose a multithreaded processor
architecture which improves machine throughput. In
our processor architecture, instructions from different
threads (not a single thread) are issued simultaneously
to multiple functional units, and these instructions can
begin execution unless there are functional unit con-
flicts. This parallel execution scheme greatly improves
the utilization of the functional unit. Simulation results
show that by executing two and four threads in parallel
on a nine-functional-unit processor, a 2.02 and a 3.72
times speed-up, respectively, can be achieved over a
conventional RISC processor.

Our architecture is also applicable to the efficient ex-
ecution of a single loop. In order to control functional
unit conflicts between loop iterations, we have devel-
oped a new static code scheduling technique. Another
loop execution scheme, by using the multiple control
flow mechanism of our architecture, makes it possible
to parallelize loops which are difficult to parallelize in
vector or VLIW machines.

1 Introduction

We are currently developing an integrated visualiza-
tion system which creates virtual worlds and represents
them through computer graphics. However, the gener-
ation of high quality images requires great processing
power. Furthermore, in order to model the real world as
faithfully as possible, intensive numerical computations
are also needed. In this paper, we present a processor
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architecture[1] used as the base processor in a parallel
machine which could run such a graphics system.

In the field of computer graphics, ray-tracing and ra-
diosity are very famous algorithms for generating re-
alistic images. In these algorithms, intersection tests
account for a large part of the processing time for the
whole program. This test has inherent coarse-grained
parallelism and can easily create many threads(parallel
processes) to be executed on multiprocessing systems.
Each thread, however, executes a number of data ac-
cesses and conditional branches. In the case of a dis-
tributed shared memory system, low processor utiliza-
tion can result from long latencies due to remote mem-
ory access. On the other hand, low utilization of func-
tional units within a processor can result from inter-
instruction dependencies and functional operation de-
lays. Another obstacle to the optimization of the single
thread execution arises if the past performance of a re-
peatedly executed conditional branch does not help in
predicting the target of future executions.

In order to overcome these problems, we introduced
two kinds of multithreading techniques into our proces-
sor architecture: concurrent multithreading and parallel
multithreading. The concurrent multithreading tech-
nique attempts to remain active during long latencies
due to remote memory access. When a thread encoun-
ters an absence of data, the processor rapidly switches
between threads. On the other hand, parallel multi-
threading within a processor is a latency-hiding tech-
nique at the instruction level. When an instruction
from a thread is not able to be issued because of ei-
ther a control or data dependency within the thread,
an independent instruction from another thread is exe-
cuted. This technique is especially effective in a deeply
pipelined processor.

Our goal is to achieve an efficient and cost-effective
processor design which is oriented specifically for use as
an elementary processor in a large scale multiprocessor
system rather than for use in an uniprocessor system.
The idea of parallel multithreading arose from hard-
ware resource optimization where several processors are
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united and reorganized so that functional units could be
fully used. Figure 1(a) shows a general multiprocessor
system organization. Multiple threads are executed on
each physical processor. For example, assume that the
utilization of the busiest functional unit of a processor
in Figure 1(a) is about 30% because of the instruction
level dependency. The utilization of the functional unit
is defined as U = N ·L

T ×100[%], where N is the number
of invocations of the unit, L is an issue latency of the
unit, and T represents the total execution cycles of the
program. In this case, three processors could be united
into one as shown in Figure 1(b), so that the utilization
of the busiest functional unit could be expected to be
improved nearly to 30×3=90%. Consequently, on the
united processor, multiple instructions from different
threads are issued simultaneously and executed unless
they conflict with one another to compete for the same
functional unit.

The programmer’s view of the logical processor in
Figure 1(b) is almost as same as the view of physi-
cal processor in Figure 1(a), although the physical or-
ganization is different. In the field of numerical com-
putation, parallel loop execution techniques developed
for multiprocessor, such as doall or doacross techniques
which assign iterations to processors, are also applica-
ble to our processor.

In this paper, we will concentrate most of our ar-
chitectural interest upon parallel multithreading and
restrict ourselves to simply outlining concurrent multi-
threading. The rest of this paper is organized as follows.
In section 2, our multithreaded processor architecture
is addressed. Section 3 demonstrates the effectiveness
of our architecture via simulation results. In section
4, preceding works on multithreaded architectures are
presented to be compared with our architecture. Con-
cluding remarks are made in section 5.

2 Processor Architecture

2.1 Machine Model

2.1.1 Hardware Organization

As shown in Figure 2, the processor is provided with
several instruction queue unit and decode unit pairs,
called thread slots. Each thread slot, associated with
a program counter, makes up a logical processor, while
an instruction fetch unit and all functional units are
physically shared among logical processors.

An instruction queue unit has a buffer which saves
some instructions succeeding the instruction indicated
by the program counter. The buffer size needs to be at
least B=S×C words, where S is the number of thread
slots, and C is the number of cycles required to access
the instruction cache.
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(b) Organization using united elementary processors

Figure 1: Multiprocessor system organization

An instruction fetch unit fetches at most B instruc-
tions for one thread every C cycles from the instruc-
tion cache, and attempts to fill the buffer in the in-
struction queue unit. This fetching operation is done
in an interleaved fashion for multiple threads. So, on
the average, the buffer in one instruction queue unit
is filled once in B cycles. When one of the threads en-
counters a branch instruction, however, that thread can
preempt the fetching operation. The instruction cache
and fetch unit might become bottleneck for a processor
with many thread slots. In such a case, another cache
and fetch unit would be needed.

A decode unit gets an instruction from an instruc-
tion queue unit and decodes it. The instruction set is
based on a RISC type, and a load/store architecture is
assumed. Branch instructions are executed within the
decode unit. The data dependencies of an instruction
are checked using the scoreboarding technique, and is-
sued if it is free of dependencies. Otherwise, issuing is
interlocked.

Issued instructions are dynamically scheduled by in-
struction schedule units and delivered to functional
units. Unless an instruction conflicts with other in-
structions issued from other decode units over the same
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Figure 2: Hardware organization with three thread slots

functional unit, the instruction is sent immediately to
the functional unit and executed. Otherwise, the in-
struction is arbitrated by the instruction schedule unit.

When an instruction is not selected by an instruction
schedule unit, it is stored in a standby station and re-
mains there until it is selected. Standby stations can al-
low decode units to proceed with their operations even
if previously issued instructions cause resource conflicts.
For example, while a shift instruction stays in a standby
station, a succeeding add instruction from the same
thread could be sent to the ALU. Consequently, instruc-
tions from a thread are executed out of order, though
they are issued from a decode unit in order. A standby
station is a simple latch whose depth is one, and differs
from a reservation station in Tomasulo’s algorithm[2]
because issued instructions are guaranteed to be free of
dependencies in our architecture.

A large general-purpose register file, as well as
floating-point one, is divided into banks, each of which
is used as a full register set private to a thread. Each
bank has two read ports and one write port. More
read ports are unnecessary because operand data can be
stored in standby stations. In order to support concur-
rent multithreading, the physical processor is provided
with more register banks than thread slots. When a
thread is executed, the bank allocated for the thread
is logically bound to the logical processor. The exclu-

sive one-to-one binding between a logical processor and
a register bank guarantees that the logical processor
does not access any register banks other than the bank
bound to it. In contrast, queue registers are special
registers which enable communications between logical
processors at the register-transfer level.

Some disadvantages with our machine model include
the hardware cost of register files, multiple thread slots,
and dynamic instruction scheduling facilities. The in-
creased complexity in the network between functional
units and register banks is also a disadvantage.

2.1.2 Instruction Pipeline

Figure 3(a) shows the instruction pipeline of the logical
processor, which is a modification of a superpipelined
RISC processor as shown in Figure 3(b). In the logi-
cal processor pipeline, two instruction fetch(IF) stages
are followed by two decode(D) stages, followed by a
schedule(S) stage, followed by multiple execution(EX)
stages, followed by a write(W) stage.

The IF stages are shown for convenience, and, in fact,
an instruction is read from a buffer of an instruction
queue unit in one cycle. In stage D1, the format or type
of the instruction is tested. In stage D2, the instruction
is checked if it is issuable or not. Stage S is inserted for
the dynamic scheduling in instruction schedule units.
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The number of EX stages is dependent on the kind of
instruction. For example, in our simulation (section 3),
we assumed each operation had latencies as listed in Ta-
ble 1. The result latency means the number of cycles
before the instruction finishes execution (i.e. the num-
ber of EX stages), and the issue latency is the number
of stages before another instruction of the same type
may be issued. Since two cycles are assumed to be
required to access the data cache as well as the instruc-
tion cache, the issue latency of load/store instructions
is two cycles. Other instructions can be accepted in ev-
ery cycle. So, the issue latency of these instructions is
one cycle. In stage W, the result value is written back
to a register.

Required operands are read from registers in stage
S. A scoreboarding bit corresponding to a destination
register is flaged on in stage S and off in the last of
the EX stages. This can avoid additional delay on the
initiation of data-dependent instructions. That is, as-
suming instruction I2 uses the result of instruction I1 as
a source, at least three cycles are required between I1
and I2 in Figure 3(a). The same cycles are also required
in the base RISC pipeline in Figure 3(b).

In the case of branch instructions, an instruction
fetch request is sent to the instruction fetch unit at the
end of stage D1, even if a conditional branch outcome
is still unknown at that point. Assume I1 is a branch
instruction and I3 is an instruction executed immedi-
ately after I1. In Figure 3(b), the delay between I1
and I3 is four cycles. But the delay in Figure 3(a) is
five. What is worse, it could become more than five if
some threads encounter branches at the same time. It

Table 1: Functional unit and issue/result latencies of
instructions

functional category of latency (cycle)
unit instructions issue result

Integer add/subtract 1 2
ALU logical 1 2

compare 1 2

Barrel Shifter shift 1 2

Integer multiply 1 6
Multiplier divide 1 6

FP Adder add/subtract 1 4
compare 1 4
absolute/negate 1 2
move 1 2

FP Multiplier multiply 1 8
divide 1 24

FP Converter convert 1 4

Load/Store load 2 4
store 2 (4)

is obvious that the single thread performance is dam-
aged. In our architecture, however, while some threads
are blocked because of branches, other types of instruc-
tions from other threads are executed. Consequently,
the parallel multithreading scheme has a potential to
hide the delay of branches as well as other arithmetical
operation delays, and enhance machine throughput.

2.1.3 Support of Concurrent Multithreading

Each pair of general purpose and floating-point register
sets, together with an instruction address save register
and a thread status register, is conceptually grouped
into a single entity called a context frame, and allocated
to a thread. An instruction address save register and
a thread status register are used as save areas for the
program counter and program status words (which hold
various pieces of thread-specific state), respectively.

Since the processor has more context frames than
thread slots, context switching is achieved rapidly by
changing the logical binding between a logical proces-
sor and a context frame. As long as the number of
threads to be scheduled does not exceed the number
of physical context frames, threads can be resident on
the physical processor, reducing the overhead to save
or restore contexts to/from memory.

Another important element of the context frame is
the access requirement buffer, which contains outstand-
ing memory access requirements. When a thread in
running state issues load/store instructions, these in-
structions are copied and recorded in the access require-
ment buffer, and deleted when they are performed.

The processor is pipelined and standby stations en-
able out-of-order execution of instructions. This makes
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the restart mechanism of programs somewhat complex.
Before the thread is switched out, the logical processor
should wait until all issued instructions but load/store
instructions are performed. A load/store instruction is
not always performed in short latency, and this is the
main source of context switching in our architecture.
Therefore, the load/store instructions in the execution
pipeline could be flushed. But the restarting of threads
is possible because such outstanding memory access re-
quests are also saved as a piece of the context. When
the thread is resumed, instructions in the access re-
quirement buffer are decoded again and re-executed,
being followed by the instruction indicated by the in-
struction address save register. This mechanism also
ensures imprecise but restartable interrupts on page
fault. Mechanisms similar to this can be applied to
floating-point exception handling.

Context switching is triggered by a data absence trap.
Detailed conditions concerning such traps must be con-
sidered with care, because incorrect choices can create
starvation and thrashing problems. We will report our
solution including cache/memory architecture in an-
other paper in the future.

2.2 Instruction Scheduling Strategy

In this section, we present the dynamic instruction se-
lection policy in the instruction schedule unit. Simple
selection policy is preferable, so as not to enlarge the
instruction pipeline pitch.

Figure 4 illustrates an example of the policy with
multi-level priorities. A unique priority is assigned to
each thread slot. Unless an issued instruction conflicts
with other instructions from other thread slots to which
higher priorities are assigned, it is selected by the in-
struction schedule unit. In order to avoid starvation,
the priorities are rotated. The lowest priority is as-

signed to the thread slot which had the highest priority
before the rotation.

The instruction schedule unit works in one of two
modes: implicit-rotation mode and explicit-rotation
mode. The mode is switched to the alternative mode
through a privileged instruction. In the implicit-
rotation mode, priority rotation occurs at a given num-
ber of cycles(rotation interval), as shown in Figure 4.
On the other hand, in the explicit-rotation mode, the
rotation of priority is controlled by software. The rota-
tion is done when a change-priority instruction is exe-
cuted on the logical processor with the highest priority.

There are two reasons why our architecture supports
the explicit-rotation mode. One is to aid the compiler
to schedule the code of threads executed in parallel
when it is possible. The other is to parallelize loops
which are difficult to parallelize using other architec-
tures. These features are discussed in section 2.3.2 and
2.3.3, respectively.

2.3 Parallel Execution of a Single Loop

2.3.1 Overview

Parallel execution of a single loop is available on our
multithreaded machine, by assigning iterations to log-
ical processors. For example, in the case of a physical
processor with n thread slots, the kth logical processor
executes the ni+kth(i = 0, 1, · · ·) iteration respectively.

The explicit-rotation mode presented in section 2.2
is one of the facilities supporting parallel execution of
a loop. In this mode, a context switch due to data ab-
sence is suppressed and a physical processor is occupied
entirely by the threads from a loop. In the usual case,
a change-priority instruction is inserted at the end of
each iteration by the compiler.

A fast-fork instruction generates the same number
of threads as logical processors by setting its own next
instruction address to program counters of other thread
slots and activating them. It also sets unique logical
processor identifiers to special registers corresponding
to each logical processor. Each thread, therefore, can
be informed which iterations it executes.

In the case of doall type of loops, it is unneces-
sary for logical processors to communicate with one
another. But the execution of doacross type of loops re-
quires communication between logical processors. One
solution would be communication through memory.
But in order to reduce the communication overhead,
we provide the processor with queue registers. They
are queue-structured registers connected to functional
units.

The connection topology among logical processors
through queue registers is important when considering
the trade-offs between hardware cost and its effect. One
simple and effective connection topology is a ring net-
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work, as shown in Figure 5. Many doacross type of
loops encountered in practice have one iteration differ-
ence. When a loop has more than one iteration differ-
ence, data should be relayed through several logical pro-
cessors. This could create overhead. Some techniques,
however, are available to convert loops so that the it-
eration difference is reduced to one. Loop unrolling is
one such technique[3].

Queue registers are enabled and disabled by spe-
cial instructions. When enabled, two queue regis-
ters, for reading from the previous and writing to the
next logical processor respectively are mapped into two
general-purpose or floating-point registers. The refer-
ence to such registers is interpreted as the reference
to queue registers, reducing data move overheads be-
tween queue registers and general/floating-point regis-
ters. Full/empty bits attached to queue registers are
available as scoreboarding bits.

2.3.2 Static Code Scheduling

As mentioned in section 1, in the case of computer
graphics programs, it is often difficult to predict the
control sequence of a thread before execution, be-
cause the sequence is determined dynamically by data-
dependent branches. In such cases, in order to obtain
high throughput, the compiler could employ no other
techniques than a simple list scheduling algorithm[4].
The compiler reorders the code without consideration
of other threads, and concentrates on shortening the
processing time for each thread. Short processing time
of a single thread means a high issuing rate of instruc-
tions because the number of instructions is constant
whether scheduled or not. Though this scheduling ap-
proach does not have control over resource conflicts, it
aims at flooding functional units with sufficient instruc-
tions by parallel execution of such scheduled code.

On the other hand, in the case of numerical com-
putation programs, it is often possible to predict the
execution-time behavior of a loop. Therefore, the

compiler employs more judicious code scheduling tech-
niques.

For example, software pipelining[5, 6], which is an
effective code scheduling technique for VLIW architec-
tures, employs a resource reservation table to avoid re-
source conflicts. Such a technique is also applicable to
our architecture. But it might postpone the issue of
instructions which would cause a resource conflict. So,
straight use of the algorithm could miss opportunities
to issue instructions. Consequently, we have developed
a new algorithm which makes the most of the function
of standby stations and instruction schedule units.

Our algorithm employs not only a resource reserva-
tion table but also a standby table whose entry corre-
sponds to a standby station. Our algorithm differs from
software pipelining in the point described below. When
all of the instructions without dependencies at an issu-
ing cycle have resource conflicts, a software pipeliner
would generate a NOP code. Our code scheduler, how-
ever, checks entries of the standby table for those in-
structions. If an entry is not marked, the instruction
is determined to be issued and the entry is marked.
This means the instruction is stored in a standby sta-
tion. The explicit-rotation mode enables the compiler
to know which instruction is selected. The resource
reservation table is not used only to determine if there
is a resource conflict, but also to tell the compiler when
the instruction in the standby station is executed.

2.3.3 Eager Execution of Sequential Loop Iter-
ations

Using an example, this section shows that our architec-
ture can parallelize loops which are difficult to paral-
lelize using vector or VLIW architectures.

The source code fragment of a sample program is
shown in Figure 6. This program traverses a linear
linked list. Although it is a simple example, it demon-
strates the application of our execution scheme using a
loop structure that is fundamental to many application
programs.

ptr = header;
while ( ptr != NULL ) {

tmp = a * ((ptr->point)->x)
+ b * ((ptr->point)->y) + c;

if ( tmp < 0 )
break;

ptr = ptr -> next;
}

Figure 6: A sample program (written in C)

Each iteration is executed on a logical processor, and
the value of ptr is passed through queue registers. The
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compiler generates multiple versions for a variable ptr
so that iterations can be initiated without having to
wait for preceding iterations to complete. Such opti-
mization with respect to a variable is a variation of the
use of variables in dataflow machines. Figure 7 illus-
trates the parallel execution scheme. Each thread re-
ceives the value of ptr from the thread executed in the
immediately preceding iteration, and passes the next
value to the thread executed in the immediately suc-
ceeding iteration. After that, the thread continues to
execute the rest of the loop body.

A thread can initiate an iteration which might not
have been executed in the sequential execution. So, we
call this scheme eager execution.

The instruction selection policy in instruction sched-
ule units plays an important part in preserving the se-
mantics of the sequential program. The execution of an
iteration is not acknowledged until the thread gets the
highest priority. It is the thread with the highest pri-
ority who executes the earliest iteration remaining at
that point. By using multilevel priority, the instruction
selection policy guarantees the execution of succeeding
iterations does not hinder the execution of preceding
iterations.

When a thread has exited from the loop, it tries to
stop the operation of other thread slots and to kill other
running threads. Such a special instruction is valid only
for the thread with the highest priority. When a thread
without the highest priority tries to execute this in-
struction, it is put into an interlocked state until it is
given the highest priority.

If the variable tmp is global and alive after the loop,
the compiler should use the special store instruction
which is performed only by the thread with the highest
priority. This guarantees that writes to the memory
location of tmp are performed in order with respect to
the source code. Some instructions are also provided to
ensure consistency between contexts of threads before
and after the execution of the loop.

3 Estimation

3.1 Simulation Model and Assumptions

In the following four sections, we present simulation re-
sults of our parallel multithreading architecture. Since
cache simulation has not yet been implemented in our
simulator, we assumed that attempts to access caches
were all hit.

We used two kinds of functional unit configurations
(see Figure 2). One consists of seven heterogeneous
units. The other consists of those units with another
load/store unit. In practice, a data cache might consist
of several banks in order to be accessed simultaneously
by two load/store units. But our simulation assumed
there was no bank conflict. Latencies of each instruc-
tion are listed in Table 1. All machines simulated in
this paper are not equipped with delayed branch mech-
anisms, branch prediction facilities, or overlapped reg-
ister windows.

In order to estimate our architecture, we use the
speed-up ratio as a criterion. It is defined as the pro-
portion of total cycles required by multithreaded exe-
cution to those by sequential execution. Sequential ex-
ecution means the execution of the sequential version of
program on a RISC based processor whose instruction
pipeline is shown in Figure 3(b).

3.2 Speed-up by Parallel Multithread-
ing

This section presents simulation results of our multi-
threaded machine. As an application program, we have
chosen a ray-tracing program, which can be easily par-
allelized at every pixel. The program written in C was
compiled by a commercial RISC compiler with an op-
timization option. The object code was executed on
a workstation, and traced instruction sequences were
translated to be used for our simulator.

Table 2 lists speed-up ratios when the rotation in-
terval in the instruction schedule unit is eight cycles.
In the case of a processor with one load/store unit,
an 1.83 times speed-up is gained by parallel execution
of two instruction streams, although all of the hard-
ware of a single-threaded processor is not duplicated in
the processor. A performance improvement of a factor
of 2.89 is still possible with four thread slots, though
it is less effective (2.89/1.83=1.58) than the improve-
ment attained by increasing from one to two thread
slots (1.83). When eight thread slots are provided, the
utilization of the busiest functional unit, the load/store
unit, becomes 99%. This is the reason why the speed-
up ratio is saturated at only 3.22 times. Addition of
another load/store unit improves speed-up ratios by
10.4∼79.8%.
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Table 2: Speed-up ratio by parallel multitthreading

with one with two
no. of load/store unit load/store units
thread without with without with
slots standby standby standby standby

station station station station
2 1.79 1.83 2.01 2.02
4 2.84 2.89 3.68 3.72
8 3.22 3.22 5.68 5.79

Standby stations improve the speed-up ratio by
0∼2.2%. This low improvement is due to poor paral-
lelism within an instruction stream. In the case of ap-
plication programs whose thread is rich in fine-grained
parallelism, greater improvement can be achieved.

We also simulated a machine whose thread slots are
provided with private instruction caches and instruc-
tion fetch units. Such organization does provide a slight
speed-up. Achieved speed-up ratios are the same as
those in Table 2, except that 1.79 and 5.79 is respec-
tively replaced by 1.80 and 5.80. This shows that the
delay due to instruction fetch conflicts is hidden and
sharing an instruction cache between thread slots is
possible.

We also examined the execution cycles with various
rotation intervals (2n cycles, where n is 0∼8). But, in
this application program, rotation interval did not have
much influence on the performance, though using eight
or sixteen cycles seems slightly superior.

3.3 Multithreading with Superscalar
Design

In our simulator, each thread slot can support multi-
ple instruction issuing from a single instruction stream
similar to superscalar architectures. In this section, us-
ing the same program as in section 3.2, we discuss hy-
brid architectures which employ both coarse- and fine-
grained parallelism.

A hybrid processor is represented here by (D,S)-
processor, where D is the maximum number of instruc-
tions which a thread slot issues each cycle, and S is
the number of thread slots. For a fair comparison, the
hardware cost of (d,s)-processor is almost as same as
that of (1,d×s)-processor. For example, the instruction
fetch bandwidth is d×s words per cycle in both proces-
sors. Although (d×2,s/2)-processor is provided with a
half register set of (d,s)-processor, it requires double the
number of register ports. Each thread slot checks the
dependencies of instructions in the instruction window
of size D, and issues instructions without dependencies
every cycle. The instruction window is filled every cy-

Table 3: Tradeoff between speed-up and employed par-
allelism (speed-up ratio)

total no. of no. of issued instructions
issued instruc- from each thread slot (D)
tions (D×S) 1 2 4 8

2 2.02 1.31 — —
4 3.72 2.43 1.52 —
8 5.79 4.37 2.79 1.66

cle. Some techniques[7, 8] are proposed to boost the
superscalar performance, but they are not provided for
the thread slot because they requires additional hard-
ware.

Table 3 lists the simulation results. Values in the ta-
ble are speed-up ratios. Simulated processors are com-
posed of eight functional units. We used the instruction
pipeline shown in Figure 3(b) for a (d,1)-processor, and
the pipeline shown in Figure 3(a) for others. This table
demonstrates that the increase of S produces a more
significant speed-up than the increase of D.

The main objective of multithreading is to enhance
the machine throughput. On the other hand, the main
objective of superscalar architecture is to improve the
single thread performance. This difference of objectives
makes a simple comparison of the two architectures im-
possible. But, from the viewpoint of cost-effectiveness,
it is clear that D=1 is the best choice if parallel multi-
threading is introduced into a processor architecture.

3.4 Effect of Static Code Scheduling

We will compare static code scheduling strategies dis-
cussed in section 2.3.2. The sample program is the Liv-
ermore Kernel 1. The source code is shown in Figure
8.

DO 1 K = 1,N
1 X(K) = Q+Y(K)*(R*Z(K+10)+T*Z(K+11))

Figure 8: Livermore Kernel 1 (written in FORTRAN)

Table 4 lists average execution cycles for one itera-
tion. The source code was compiled by a commercial
compiler, and the generated object code was scheduled
by our code schedulers. The simulated machine has
one load/store unit. Strategy A represents a simple list
scheduling approach, and strategy B represents the list
scheduling approach with a resource reservation table
and a standby table.

Strategy B is overall superior to other strategies.
It achieves the performance improvement by 0∼19.3%
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Table 4: Comparison of static code scheduling

no. of optimization strategy
thread non- strategy strategy
slots optimized A B
1 50 42 —
2 25 21.5 21
3 16.7 15 14
4 12.75 11.25 11
5 10.4 9 9
6 8.83 8 8
7 8.125 8 8

8 ∼ 8 8 8
(unit: cycle)

over non-optimized code. The differences between ef-
fectiveness of strategy A and strategy B, however, are
small in this program. Although strategy A achieves
nearly the same effectiveness at a lower cost, strategy
B should be employed in order to optimize the program.

The object code contains three load instructions and
one store instruction, so at least (3+1)×2=8 cycles are
required for one iteration. This is the reason of perfor-
mance saturation.

3.5 Effect of Eager Execution

In section 2.3.3, the eager execution scheme of sequen-
tial loop iterations is addressed. This section reports
simulation results of the execution of the sample pro-
gram shown in Figure 6. The simulated machine has
one load/store unit.

The execution of the sequential version of the object
code requires 56 cycles for one iteration. Table 5 lists
the average execution cycles of the parallel version for
one iteration. With a small number of thread slots,
when a new value of ptr is passed to the next thread
through a queue register, the thread is still executing
a preceding iteration. An increase in the number of
thread slots enables a thread to initiate an iteration as
soon as the data is available, but the speed-up ratio is
limited by the inter-loop dependency of ptr.

Since parallel code includes more overhead in loop
headers and footers than sequential code, sequential ex-
ecution performs better than parallel execution when
the number of iterations is small. As the number of
iterations increases, the maximum speed-up ratio be-
comes closer to 56/17=3.29 times.

4 Related Works

The concept of concurrent multithreading is discussed
in HEP[9], MASA[10], Horizon[11], and P-RISC[12].

Table 5: Evaluation of eager execution of sequential
loop iterations

no. of execution cycle
thread slots for one iteration

2 32.5
3 21.67

4 ∼ 17

These processors support cycle-by-cycle interleaving of
instructions from multiple instruction streams. In or-
der to improve poor performance of single thread ex-
ecution in these machines, APRIL[13], and [14] sup-
port block interleaving in which a thread keeps control
until it encounters a remote memory access. The hy-
brid data-flow/von Neumann machine[15] also employs
the latter type of interleaving. Our concurrent multi-
threading scheme builds on such a block interleaving
architecture. In our architecture, however, combina-
tion with parallel multithreading enables other threads
to continue working during context switches.

Farrens and Pleszkun[16] take a multithreading ap-
proach to increase instruction issuing rate. This idea
is closely allied to the basic one of our parallel multi-
threading. In their architecture, two instructions from
two threads compete with each other to be issued, but
the total number of issued instructions each cycle is still
at most one. On the other hand, in our architecture,
multiple instructions can be issued unless there are re-
source conflicts.

Daddis and Torng[17] propose a superscalar archi-
tecture which uses multiple threads to increase func-
tional unit utilization. Prasadh and Wu[18] present
a VLIW architecture which does the same. In our
opinion, such hybrid architectures are not as cost-
effective as a multithreaded non-superscalar architec-
ture as mentioned in section 3.3. Functional unit uti-
lization is an important factor, but the instruction
fetch bandwidth sufficient to sustain multiple functional
units must also be considered. For example, although
Prasadh’s four-threaded, eight-functional-unit proces-
sor achieves about eight times speed-up, it requires an
instruction fetch bandwidth of thirty-two words per cy-
cle.

5 Concluding Comments

In this paper, we proposed a multithreaded archi-
tecture oriented for use as a base processor of mul-
tiprocessor systems. Through the simulation using
a ray-tracing program, we ascertained that a two-
threaded, two-load/store-unit processor achieves a fac-
tor of 2.02 speed-up over a sequential machine, and
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a four-threaded processor achieves a factor of 3.72
speed-up. We also examined the performance of multi-
threaded architecture combined with superscalar tech-
nique. This evaluation, however, shows the best cost-
effectiveness is achieved when a processor employs only
coarse-grained parallelism and ignores fine-grained par-
allelism.

We developed a static code scheduling algorithm ap-
plicable for our architecture, which is derived from idea
of software pipelining. We also investigate possibilities
for broadened use of parallel multithreading scheme.
One instance of such intention is presented as an eager
loop execution scheme. It parallelizes loops which are
difficult to be parallelized with other architectures.

One weak point of this paper is the poor variety of
tested programs. We should confirm the effectiveness of
our architecture by using many other application pro-
grams. We are currently working on evaluating finite
cache effects and the detailed design of the processor.
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